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Abstract

The Neologos project is a speech database creation project
for the French language, resulting from a collaboration be-
tween universities and industrial companies and supported by
the French Ministry of Research. The goal of Neologos is to
re-think the design of the speech databases in order to enable
the development of new algorithms in the field of speech pro-
cessing. A general method is proposed to optimize the database
contents in terms of diversity of the recorded voices, while re-
ducing the number of recorded speakers.

1. Presentation
1.1. General goals

The state of the art techniques in the various domains of Auto-
matic Speech Processing (be it for Automatic Speaker Recog-
nition, Automatic Speech Recognition or Text-To-Speech Syn-
thesis by computers) make extensive use of speech databases.
Nevertheless, the problem of the optimization of the contents of
these databases with respect to the requested task has seldom
been studied [1]. The usual definition of speech databases con-
sists in collecting a volume of data that is supposed sufficiently
large to represent a wide range of speakers and a wide range of
acoustic conditions [2, 3]. Nevertheless, identifying and omit-
ting some redundant data may prove more efficient with respect
to the development and evaluation costs as well as with respect
to the performances of the targeted system [1]. Alternately, the
most recently developed speech recognition and adaptation al-
gorithms tend to make use of several specialized models in-
stead of a unique general model, and hence require an impor-
tant volume of data to guarantee that the variability of speech
will be accurately modeled. Similarly, the most recent advances
in Text-To-Speech synthesis (TTS) require the availability of a
wider range of speakers to investigate the degradation of qual-
ity which is still noticeable in the synthetic voices. Hence, the
above-mentioned developments require a much larger quantity
of data per speaker than traditional databases can offer. Never-
theless, the increase in the collection cost for such newer and
larger databases should be limited as much as possible.

Thus the NEOLOGOS project focuses on optimizing the
contents of the speech databases in order to obtain a guarantee
on the diversity of the recorded voices, both at the segmental
and supra-segmental levels. In addition to this scientific objec-

tive, it addresses the practical concern of reducing the collection
costs for new speech databases.

1.2. Context of the Neologos project

The starting point of this work is to consider that the vari-
ability of speech can be decomposed along two axes, one of
speaker-dependent variability and one of purely phonetic vari-
ability. The classical speech databases [3] seek to provide a
sufficient sampling of both variabilities by collecting few data
over many random speakers (typically, several thousands). Con-
versely, Neologos proposes to optimize explicitly the coverage
in terms of speaker variability, prior to extending the phonetic
coverage by collecting a lot of data over a reduced number of
reference speakers.

In this framework, the reference speakers should come out
of a selection process which guarantees that their recorded
voices are non-redundant but keep a balanced coverage of the
voice space. Thus, the collection of the Neologos corpus is a
three stage process:

1. the BOOTSTRAP database is collected by recording a first
set of 1,000 different speakers over the fixed telephone
network. The recorded utterances are a set of 45 phonet-
ically balanced sentences, identical for all the speakers
and recorded in one call. Such sentences are optimized
to facilitate the comparison of the speaker characteris-
tics;

2. a subset of 200 reference speakers is selected through a
clustering of the voice characteristics of the 1,000 boot-
strap speakers.

3. the final database of 200 reference speakers, called ID-
IOLOGOS, is collected. The reference speakers are re-
quested to pronounce a large corpus of 450 specific sen-
tences, identical for all the speakers, in 10 successive
telephone calls that must be completed in a short period
of time to avoid shifts in the voice characteristics.

This paper focuses on the second stage of the process: the ex-
traction of the reference speakers. This task has been inter-
preted as a clustering task, which consists in partitioning the
voice space in homogeneous subspaces that can be abstracted
by a single reference speaker. We formulate this problem in a
general framework which remains compatible with a variety of
speech/speaker modeling methods, across which some lists of
reference speakers can be compared and jointly optimized.



Section 2 exposes our speaker selection methodology and
the design of the related corpus. Section 3 proposes and dis-
cusses some particular instances of speaker similarity metrics.
Section 4 presents the clustering method. Section 5 exposes
some experimental results, while section 6 discusses some con-
clusions and perspectives.

2. Methodology and corpus
2.1. Formulation of the approach, notations

2.1.1. Reference speakers

Let M be a large number of speakers xi, i = 1, · · · , M , among
which we want to choose N < M reference speakers. Let L =˘
ΘA

j ; j = 1, · · · , N
¯

be a given set of N speaker prototypes
ΘA

j . The prototypes can be understood either as models of some
sets of speakers, or as models of a single, observed speaker.
They depend on a modeling paradigm A. Let dA

`
xi, Θ

A
j

´
be a

function able to measure the distance, or dissimilarity, of xi to
any prototype ΘA

j in the modeling framework A. The lower the
distance, the better ΘA

j models xi.
Let refA(xi|L) be a function able to find out, among the

list L, the prototype which provides the best modeling of the
speaker xi according to the method A. Given the above defini-
tions, it can be obtained as:

refA(xi|L) = arg min
j=1,··· ,N

dA(xi, Θ
A
j ) (1)

If each of the prototypes ΘA
j refers to a unique speaker, in-

terpreting refA(xi|L) as the identity of a reference speaker
is straightforward. Conversely, if each of the ΘA

j refers to
a set of speakers (e.g., if the ΘA

j are models based on some
pooled speaker data), then an additional step is needed to relate
refA(xi|L) to a unique speaker identity.

2.1.2. Quality of a list of reference speakers

Given the ability to represent every speaker xi of the initial set
by a reference speaker issued from a given list L, then:

QA(L) =
MX

i=1

dA (xi, refA(xi|L)) (2)

measures the total cost, or total loss of quality, that occurs when
replacing each of the M initial speakers by their best prototype
among the N models listed in L, according to the modeling
method A. The smaller this total loss, the more representative
the reference list.

2.1.3. Optimal list of reference speakers

In turn, finding the optimal list LA of reference speakers with
respect to the modeling method A translates as:

LA = arg min QA(L) (3)

Due to the dimensions of the databases, solving this optimiza-
tion problem by an exhaustive search across all the possible
combinations of N speakers taken among M speakers is infea-
sible due to the huge number of combinations CN

M =
`

M
N

´
=

M!
N!(M−N)!

. Nevertheless, it is possible to use heuristic meth-
ods such as Hierarchical Clustering or K-means to find locally
optimal solutions.

2.1.4. Comparison of reference lists

Within equation (2), the quality of any reference list L can be
measured. In particular, L can be a list LB issued from an opti-
mization in the modeling framework B:

LB =
n
ΘB

j ; j = 1, · · · , N
o

= arg min QB(L) (4)

In this case, the reference speakers can be attributed from LB

with respect to an alternate modeling framework A:

refA(xi|LB) = arg min
j=1,··· ,N

dA(xi, Θ
B
j ) (5)

It follows that the quality of a selection of reference speakers
LB made in the framework of the modeling method B can be
evaluated in the scope of the modeling method A:

QA(LB) =

MX
i=1

dA(xi, refA(xi|LB)) (6)

This case illustrates the fact that the quality defined by equa-
tion (2) brings a general answer to the problem of comparing
some reference lists, even when the lists come from different
modeling frameworks. With this definition, it is possible to
evaluate if a selection of reference speakers made with respect
to the modeling method A is “good” in the scope of the model-
ing method B. Defining the similarity of the lists in the space of
the qualities is more general than trying to implement a direct
comparison of the lists’ contents.

2.1.5. Calibration of the measure of quality

For the quality of a reference speaker selection to be inter-
pretable and comparable across several modeling criteria, it is
necessary to calibrate it. This is done by ranking QA with re-
spect to an estimate of the distribution of qualities, estimated
from a “big enough” number of randomly generated lists of ref-
erence speakers. In a non-parametric framework, the values of
QA (Lrand) are simply sorted in decreasing order, i.e., from the
worst random list to the best. To evaluate a particular list L, we
rank QA(L) against the sorted qualities and divide the result
by the total number of random lists. This normalized rank is
called a Figure Of Merit (FOM). It is very easily interpretable:
FOMA(L) = 80% means that the list L is better, in the frame-
work of A, than 80% of the random lists in Lrand. The closer to
100%, the better the list.

2.2. Corpus design and collection

2.2.1. Repartition of the speakers

The BOOTSTRAP database is balanced across gender, age and
regional characteristics. Enhancements with respect to existing
French databases such as SpeechDat [4] include a finer reparti-
tion in terms of geographic area (twelve distinct French regions
are used), as well as a better representation of elderly speakers
(60 and more, with a proportion approximately equal to that of
the three other age ranges).

2.2.2. Linguistic contents and phonetic alignment

The corpora are constructed by processing sentences from large
publicly available newspaper corpora in French. Automatic
corpora reduction methods [5] are used to extract a subset of
sentences meeting a criterion of minimal representation of all
the phonemes, as well as a criterion of minimal representation



of diphone classes. A phonetic alignment has been obtained
by matching the corresponding orthographic transcriptions to
the spoken utterances, with the help of a HMM-based labeling
tool [6].

3. Modeling the speaker similarity
3.1. Speaker similarity

As seen in section 2, our method is based on the definition of a
distance dA(xi, Θ

A
j ) between a speaker xi and a cluster model

ΘA
j within a modeling framework A. In the case where the

prototypes ΘA
j can be abstracted by individual speakers x̂(ΘA

j )
(possibly, the centroid of the cluster), this distance can be under-
stood as an explicit speaker similarity dA(xi, xj), measured be-
tween two speakers xi and xj via a modeling method A. Many
inter-speaker metrics have already been studied in the context of
some clustering applications (e.g. [7], [8], etc). These metrics
reflect a diversity of aspects of speech modeling. As our method
enables considering various criteria, we have considered a panel
of four methods which focus on a variety of speech model-
ing aspects: Canonical-Vowels (CV), Dynamic Time Warping
(DTW), Gaussian Mixture Models (GMM) and HMM affiliated
phonemes models (HMM). Each of the corresponding metrics is
detailed in the following sections. All metrics are implemented
with MFCC features.

3.2. Gaussian models of Canonical Vowels

This metrics accounts for physiological differences between
speakers, related to their vocal tract dimensions, in a maxi-
mum likelihood modeling framework. We have more particu-
larly considered the three cardinal vowels /a/, /i/ and /u/,
located at the extremes of the vocalic triangle, because their
spectral characteristics are directly related to the shape of the
vocal tract.

For each phoneme α = /a/, /i/, /u/, and denoting by pα
i

the Gaussian model of the phoneme α for speaker xi, the sim-
ilarity metrics between speakers xi and xj with respect to α is
defined as:

dα(xi, xj) = KL(pα
i ||pα

j ) + KL(pα
j ||pα

i ) (7)

where KL denotes the Kullback-Leibler divergence. A global
distance dCV can be defined as a simple sum of the phoneme-
dependent distances:

dCV(xi, xj) = d/a/(xi, xj)+d/i/(xi, xj)+d/u/(xi, xj) (8)

3.3. A DTW-based metrics

Comparing two pronunciations of the same sentence by two
different speakers through Dynamic Time Warping (DTW)
amounts to computing a distance which makes only minimal
modeling assumptions, stays very close to the original signal,
and is affiliated with classical speech recognition techniques.
In our framework, the DTW distance is computed between
breath groups, which represent portions of signal which are long
enough to account for various large scale speech variability phe-
nomena (e.g., co-articulation, utterance speed etc.) while stay-
ing quite homogeneous. They have been manually determined
by a phonetician expert. 160 breath groups have been obtained
from the 45 reference sentences. They have an average length
of 900 ms.

For a pair of speakers (xi, xj), the DTW distance is con-
sidered only between the correct pronunciations of the breath

group for both speakers. In practice, for any pair (xi, xj) of
speakers, about 150 of the 160 possible breath groups are cor-
rectly pronounced. The total distance between the two speakers
is given by the average DTW distance over these pronuncia-
tions. Given the displacement constraints used in the DTW, this
distance is symmetrical.

3.4. GMM-based speaker modeling

The Gaussian Mixture Models (GMMs) are the basis of the state
of the art in the domain of Automatic Speaker Recognition [9].
In this framework, speaker dependent Gaussian Mixture Mod-
els (GMMs) are trained on the phonetically balanced sentences
for each speaker of the bootstrap database. A speaker similarity
metrics is defined as an estimate of the Kullback-Leibler di-
vergence between such models, through a Monte-Carlo method
[10].

3.5. HMM-based modeling

In this framework, some phoneme models are trained as the
states of Hidden Markov models. To ensure that there is enough
data for each model, they are based on pooled data sets com-
prising several speakers. The prototypes ΘHMM

j are models cor-
responding to pools πj of speakers and they are a result of a hi-
erarchical clustering for building phone models, in a maximum
likelihood framework. As prototypes refer to pools of speakers,
the speaker similarity measure is defined via a degree of simi-
larity to the abstract models ΘHMM

j , instead of being established
directly between the speakers. For each of the abstract proto-
types, a reference speaker can be chosen as the member of the
pool which is the most similar to the whole model:

x̂
`
ΘHMM

j

´
= arg max

xk∈πj

Lk

`
ΘHMM

j

´
(9)

4. Speaker selection combining various
criteria

According to the methodology exposed in section 2, the list of
reference speakers is found by minimizing the quality criterion
defined by the equation 3. This is done separately in the vari-
ous modeling frameworks which define an inter-speaker metrics
(CV, DTW and GMM). Three optimization methods have been
applied, based on heuristic considerations: (a) a modified ver-
sion of the K-Means algorithm where the mean of the algorithm
is replaced with the median (since the centroid must correspond
to an actual speaker instead of a virtual averaged speaker), (b) a
Hierarchical Clustering algorithm, with an agglomerative and a
divisive version, and (c) a new method, called the Focal Speak-
ers selection, which showed good experimental results for this
problem. These methods are extensively described and studied
in [11].

The solutions issued from the various speaker selection al-
gorithms can be evaluated and ranked across the different sim-
ilarity modeling methods with the help of the FOM defined in
section 2.1.5. As a matter of fact, the final list can be choosen as
the one with the best average FOM over the three modeling cri-
teria, given an additional minimal boundary of the FOM within
each criterion.

5. Results
We have been able to extract several lists of reference speak-
ers reaching good scores in the above-defined selection process
(i.e., having a FOM=100 for each and every of the CV, DTW



and GMM criteria). By defining some additional coverage con-
sideration, the clustering method based on the HMM phone
models has helped us to determine the final list to be recorded
for the IDIOLOGOS database. The collection of this database is
an ongoing process.

An interesting analysis is then to rebuild clusters with the
1000 speakers of the bootstrap database, around the 200 speak-
ers of the Idiologos database, for each metrics separately. Here,
a cluster is built with all the speakers who share the same ref-
erence speaker as defined in equation 1. The distribution of the
size of the clusters for each metrics is plotted in figure 1. By
definition, the average size of the clusters is 1000/200=5. The
CV metrics is the metrics which leads to the most uniform dis-
tribution, compared to the GMM metrics which has the highest
numbers of isolated speakers: for GMM, 121 speakers out of
1000 are in clusters of size one, whereas, for the CV metrics,
only 48/1000 speakers are isolated.
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Figure 1: Distribution of the size of the clusters for each metrics

We have compared BOOTSTRAP and IDIOLOGOS in terms
of age/gender/accents distribution (criteria which were not ex-
plicitly used in the extracting process). The gender distribution
is the same for both databases, the accent distribution is slightly
modified. The age distribution is plotted in figure 2. It is mod-
ified by the extraction process, emphasizing the contribution of
the elderly people.
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Figure 2: Age distribution

6. Conclusions and perspectives
We propose a method to optimize a speech database through
the selection of reference speaker recordings. The optimiza-
tion aims at keeping a diversity of voices while pruning the
number of speakers. Hence, it is based on the notion of a
speaker (dis-)similarity metrics, and of a measure of quality
for some lists of reference speakers. The quality corresponds
to the capacity of a reference list to keep a lot of similarity
with the pruned speakers. Our implementation of this paradigm

proposes, but is not limited to, 4 different ways to model the
speaker dissimilarity. Then, we propose to determine the lists of
reference speakers through a local optimization based on some
clustering methods.

This work represents the foundation of a new framework
for the optimization of speech databases. The proposed method
is flexible and open to the use of other measures of speaker dis-
similarity or other quality optimization schemes.

The collection of the complementary database for the se-
lected reference speakers is an ongoing task done by our part-
ners in the project, TELISMA and ELDA . It will be distributed
by ELDA. Further work will consist in evaluating a posteri-
ori the modeling capabilities of the IDIOLOGOS database, is-
sued from the selection of reference speaker, compared with the
modeling capabilities of the usual speech database, for instance
in the framework of speech recognition.
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